Answer:
Halfway between B and A on the return leg.
Explanation:
Your average SPEED for the entire trip will equal your constant speed as the time and distance increase at proportionate rates.
Your average VELOCITY will equal your constant speed while you travel from A to B because time and displacement are increasing at proportionate rates.
When you turn around at B to return, your Displacement is now decreasing while your travel time continues to increase, so your average velocity decreases.
Lets say the distance from A to B is 90 km and your constant speed is 30 km/hr.
your average speed is 30 km/hr because you took 6 hrs to travel 180 km
We want to find your position when your average velocity is 30/3 = 10 km/hr
it took 3 hrs to go 90 km from A to B. Let t be the time lapsed since turn around
your displacement is given by d = 90 - 30(t)
and your total time of travel is t + 3 hrs
v = d/t
10 = (90 - 30t) / (t + 3)
10(t + 3) = (90 - 30t)
10t + 30 = 90 - 30t
40t = 60
t = 1.5 hrs
This will occur when you are halfway between B and A
Answer:
Explanation:
Given that,
Mass of sledge hammer;
Mh =2.26 kg
Hammer speed;
Vh = 64.4 m/s
The expression fot the kinetic energy of the hammer is,
K.E(hammer) = ½Mh•Vh²
K.E(hammer) = ½ × 2.26 × 64.4²
K.E ( hammer) = 4686.52 J
If one forth of the kinetic energy is converted into internal energy, then
ΔU = ¼ × K.E(hammer)
∆U = ¼ × 4686.52
∆U = 1171.63 J
Thus, the increase in total internal energy will be 1171.63 J.
Answer:
Angular acceleration will be 
Explanation:
We have given that mass m = 0.18 kg
Radius r = 0.32 m
Initial angular velocity 
And final angular velocity 
Time is given as t = 8 sec
From equation of motion
We know that 


So angular acceleration will be 
Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!
Answer:
L=55.9m
Explanation:
The equation for the period of a simple pendulum is:

In our case what we know is the period and the acceleration of gravity, and we need to know the length of the pendulum, so we can write:

Which for our values is:
