Answer:
The unknown substance is Aluminum.
Explanation:
We'll begin by calculating the change in the temperature of substance. This can be obtained as follow:
Initial temperature (T₁) = 25 ⁰C
Final temperature (T₂) = 100 ⁰C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 100 – 25
ΔT = 75 ⁰C
Finally, we shall determine the specific heat capacity of the substance. This can be obtained as follow:
Change in temperature (ΔT) = 75 ⁰C
Mass of the substance (M) = 135 g
Heat (Q) gained = 9133 J
Specific heat capacity (C) of substance =?
Q = MCΔT
9133 = 135 × C × 75
9133 = 10125 × C
Divide both side by 10125
C = 9133 / 10125
C = 0.902 J/gºC
Thus, the specific heat capacity of substance is 0.902 J/gºC
Comparing the specific heat capacity (i.e 0.902 J/gºC) of substance to those given in the table above, we can see clearly that the unknown substance is aluminum.
A property of cells, tissues, and organisms that allows the maintenance and regulation of the stability and constancy needed to function properly. Homeostasis is a healthy state that is maintained by the constant adjustment of biochemical and physiological pathways.
have a good day :).
The correct answer is C.)
It has made road vehicles safer because magnetometers are used to detect particles found in radiation emitted during combustion of fuel.
h a v e a g r e a t d a y
Answer:
≅3666.67 N
Explanation:
Use Newton's 2nd law, F = ma where F=force applied, m = mass of the object,
a = acceleration acquired by the object.
a= (v-u)/t where v = final velocity, u = initial velocity and t = time taken
calculate a = (30-0)/9 ≅ 3.33 m/s2
Then F = 1100×a = 3666.67 N
Answer:
A) 89.39 J
B) 30.39J
C) 23.8 J
Explanation:
We are given;
F = 30.2N
m = 3.5 kg
μ_k = 0.646
d = 2.96m
ΔEth (Block) = 35.2J
A) Work done by the applied force on the block-floor system is given as;
W = F•d
Thus, W = 30.2 x 2.96 = 89.39 J
B) Total thermal energy dissipated by the whole system which includes the floor and the block is given as;
ΔEth = μ_k•mgd
Thus, ΔEth = 0.646 x 3.5 x 9.8 x 2.96 = 65.59J
Now, we are given the thermal energy of the block which is ΔEth (Block) = 35.2J.
Thus,
ΔEth = ΔEth (Block) + ΔEth (floor)
Thus,
ΔEth (floor) = ΔEth - ΔEth (Block)
ΔEth (floor) = 65.59J - 35.2J = 30.39J
C) The total work done is considered as the sum of the thermal energy dissipated as heat and the kinetic energy of the block. Thus;
W = K + ΔEth
Therefore;
K = W - ΔEth
K = 89.39 - 65.59 = 23.8J