Answer:
Cohen's d : 1.00
Step-by-step explanation:
We know that M₁ = 18, and M₂ = 14. Given that the pooled variance for the these two samples are 16, S²Pooled = 16, and therefore S - pooled = 4.
The formula to solve for the value of Cohen's d is as follows,
d = M₁ - M₂ / S - pooled,
d = 18 - 14 / 4 = 4 / 4 = 1
Therefore the value of Cohen's d = 1
Answer:
True
Step-by-step explanation:
We use different models for different types of variation. For example, linear variation is associated with the formula y=ax, or the more familiar y=mx+b (the equation of a straight line). Cubic variation: y=a*x^3. In the present case we're discussing quadratic variation; perhaps that will ring a bell with you, reminding you that y=ax^2+bx+c is the general quadratic function.
Now in y our math problem, we're told that this is a case of quadratic variation. Use the model y=a*x^2. For example, we know that if x=2, y =32. Mind substituting those two values into y=a*x^2 and solving for y? Then you could re-write y=a*x^2 substituting this value for a. Then check thisd value by substituting x=3, y=72, and see whether the resulting equation is true or not. If it is, your a value is correct. But overall I got 16!
Answers:
When we evaluate a logarithm, we are finding the exponent, or <u> power </u> x, that the <u> base </u> b, needs to be raised so that it equals the <u> argument </u> m. The power is also known as the exponent.

The value of b must be <u> positive </u> and not equal to <u> 1 </u>
The value of m must be <u> positive </u>
If 0 < m < 1, then x < 0
A <u> logarithmic </u> <u> equation </u> is an equation with a variable that includes one or more logarithms.
===============================================
Explanation:
Logarithms, or log for short, basically undo what exponents do.
When going from
to
, we have isolated the exponent.
More generally, we have
turn into 
When using the change of base formula, notice how

If b = 1, then log(b) = log(1) = 0, meaning we have a division by zero error. So this is why 
We need b > 0 as well because the domain of y = log(x) is the set of positive real numbers. So this is why m > 0 also.
What number cubed equals -1331?
it is -11 because -11*-11*-11 equals to -1331