Answer:
V CH4(g) = 190.6 L
Explanation:
assuming ideal gas:
∴ STP: T =298 K and P = 1 atm
∴ R = 0.082 atm.L/K.mol
∴ moles (n) = 7.80 mol CH4(g)
∴ Volume CH4(g) = ?
⇒ V = RTn/P
⇒ V CH4(g) = ((0.082 atm.L/K.mol)×(298 K)×(7.80 mol)) / (1 atm)
⇒ V CH4(g) = 190.6 L
According to markovnikov's rule of the electrophilic addition to an alkene, the electrophile, usually a proton, is more likely to add to the less-substituted carbon in a double bond.
With additional substituents present in this configuration, the intermediate carbocation is stabilised by being located on the more-substituted carbon.
The nucleophile will then end up in a double bond on the more-substituted carbon in a reaction that follows Markovnikov's rule.The outcome of some addition reactions is described by Markovnikov's rule or Markownikoff's rule in organic chemistry. Vladimir Markovnikov, a Russian scientist, created the rule in 1870.
To learn more about Markovnikov's rule
brainly.com/question/14529644
#SPJ4
Answer:
Kc =![\frac{[8.326x10-3]^{1} }{[1.113x10-2]^{1}[1.490x10-2]^{1} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B8.326x10-3%5D%5E%7B1%7D%20%7D%7B%5B1.113x10-2%5D%5E%7B1%7D%5B1.490x10-2%5D%5E%7B1%7D%20%20%7D)
Kc = 50.2059
Explanation:
1. Balance the equation
2. Use the Kc formula
Remember that pure substances, like H2 are not included on the Kc formula