Answer:
they are equal.
Explanation:
1 mol = 6.022 × 10^23 (Avogadro's constant), which is the number of atoms in 1 mol of any element. Doesn't matter what their atomic mass is, although, of course, 1 mol of carbon weighs less than 1 mol of calcium, but its because their mass is different, but the point is, in 1 mol of any element there is 6.03*10^23 atoms
This is like saying, what weighs more, 10 kg of feathers or 10 kg of metal
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
The lowest value of the henry's law for methane gas (CH₄) will be obtained with H₂O as the solvent and a temperature of 349 K.
Henry's law: This law states that at a constant temperature, the amount of a gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas that in equilibrium with that liquid.
Mathematically it can be written as:

So, for the methane gas , lowest value of the henry's law obtained at 349 K and with H₂O as the solvent.
•••••••••••••••••••••••••••••
Answer:
18 g
Explanation:
We'll begin by converting 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Next, we shall determine the number of mole of the glucose, C₆H₁₂O₆ in the solution. This can be obtained as follow:
Volume = 0.5 L
Molarity = 0.2 M
Mole of C₆H₁₂O₆ =?
Molarity = mole / Volume
0.2 = Mole of C₆H₁₂O₆ / 0.5
Cross multiply
Mole of C₆H₁₂O₆ = 0.2 × 0.5
Mole of C₆H₁₂O₆ = 0.1 mole
Finally, we shall determine the mass of 0.1 mole of C₆H₁₂O₆. This can be obtained as follow:
Mole of C₆H₁₂O₆ = 0.1 mole
Molar mass of C₆H₁₂O₆ = (12×6) + (1×12) + (16×6)
= 72 + 12 + 96
= 180 g/mol
Mass of C₆H₁₂O₆ =?
Mass = mole × molar mass
Mass of C₆H₁₂O₆ = 0.1 × 180
Mass of C₆H₁₂O₆ = 18 g
Thus, 18 g of glucose, C₆H₁₂O₆ is needed to prepare the solution.