Answer:
384.6 m
Explanation:
The length of the runway airport should be long enough to accommodate the aircraft during its acceleration from rest to 161 km/h at rate of 2.6 m/s. We can use the following equation of motion to solve for this:

where v0 = 0 m/s is the initial velocity of the airplane when it start accelerating, v = 161 km/h = 161*1000*(1/60)(1/60) = 44.72 m/s is the airborn speed, a = 2.6 m/s2 is the acceleration, and
is the distance of the runway, which we care looking for


Linear velocity and angular velocity are related by the formula:
v = ωr
ω = n2πr/t, where n is the number of rotations, t is the time taken, r is the radius.
ω = 2 x 2π x 25/1
ω = 100π
v = 100π x 25
= 2500π feet per minute
Answer:
It would change the amount of heat produced in the transmission line to four times the previous value.
Explanation:
Given;
initial voltage in the transmission line, V₁ = 500 kV = 500,000 V
Final voltage in the transmission line, V₂ = 1 MV = 1,000,000
The power lost in the transmission line due to heat is given by;

Power lost in the first wire;


Power lost in the second wire

Keeping the resistance constant, we will have the following equation;


Therefore, it would change the amount of heat produced in the transmission line to four times the previous value.
Answer:
An amorphous solid does not have a definite melting point; instead, it melts gradually over a range of temperatures, because the bonds do not break all at once. This means an amorphous solid will melt into a soft, malleable state (think candle wax or molten glass) before turning completely into a liquid.
Explanation:
Hope this helps
May I get braineist pls?
A set of stars will appear at a different angle to us at different times of the year because of the Earth's orbit around the sun. As it orbits around the sun, the parallax of the stars change.