The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
<h3>What do you mean by electric potential? </h3>
The amount of work needed to move a unit charge from a reference point to a specific point against an electric field. It's SI unit is volt.
V = kq/r
Where V represents electric potential, K is coulomb constant, q is Charge and r is distance between any two around charge to the point charge.
Electric potential at O due to four charges is given by,
V = 4KQ/ r
where, r = √2a/2 = a/√2
V = 4k × Q√2/a
V = √2Q/πÈa
The total electric potential at the center of the square due to the four charges is V = √2Q/πÈa.
To learn more about electric potential refer to:
brainly.com/question/12645463
#SPJ4
Answer:
Flint glass is combination of silicon dioxide (SiO2) with lead or potassium. It creates a relatively high refractive index and high degree of light dispersing power compared to other types of glass.
Explanation:
:)
(a) The velocity (in m/s) of the rock after 1 second is 11.28 m/s.
(b) The velocity of the rock after 2 seconds is 7.56 m/s.
(c) The time for the block to hit the surface is 4.03.
(d) The velocity of the block at the maximum height is 0.
<h3>
Velocity of the rock</h3>
The velocity of the rock is determined as shown below;
Height of the rock after 1 second; H(t) = 15(1) - 1.86(1)² = 13.14 m
v² = u² - 2gh
where;
- g is acceleration due to gravity in mars = 3.72 m/s²
v² = (15)² - 2(3.72)(13.14)
v² = 127.23
v = √127.23
v = 11.28 m/s
<h3>Velocity of the rock when t = 2 second</h3>
v = dh/dt
v = 15 - 3.72t
v(2) = 15 - 3.72(2)
v(2) = 7.56 m/s
<h3>Time for the rock to reach maximum height</h3>
dh/dt = 0
15 - 3.72t = 0
t = 4.03 s
<h3>Velocity of the rock when it hits the surface</h3>
v = u - gt
v = 15 - 3.72(4.03)
v = 0
Learn more about velocity at maximum height here: brainly.com/question/14638187
Answer:
a. b- x= y
dx = -dy
b. F = 
c. F = 
Explanation:
a. x components:

= 
Integrating and solving gives:
b- x= y
dx = -dy
b. the force is given by the equation derived from (a.):
F = 
c. Given that r>>a, the expression becomes:
F = 
Explanation:
When the size of the charge distribution is less than the distance to the deviation point of the charge then the charge distribution would produce the same effect such as a linear charge.
Given that,
Mass of a tribble, m = 2.5 kg
Radius, r = 1.4 m
The force on the tribble from the bucket does not exceed 10 times its weight.
To find,
The maximum tangential speed.
Solution,
The force acting on the tribble is equal to the centripetal force.
F = 10mg
The formula for the centripetal force is given by :

v is maximum tangential speed

So, the maximum tangential speed is 11.7 m/s.