Answer: (1) The correct answer is A.
(2) The correct answer is D.
Explanation:
(1)
Reflection is the sending back of light from the surface without absorbing it. In the reflection phenomenon, the wave does not continue moving forward.
Diffraction is the bending of the light around the obstacle. In the diffraction phenomenon, the wave travels forward after striking around the obstacle.
Therefore, the correct answer is A.
(2)
Amplitude is the maximum displacement in the medium from the rest position.
The amount of energy is related to the amplitude. Amplitude is related to the amount of energy carried by the wave. Low energy wave is characterized by a low amplitude. High energy wave is characterized by a high amplitude.
Therefore, the correct option is D.
Answer:
The Acceleration will increase
Explanation:
Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.
It can be expressed mathematically as,
F ∝ m(v-u)/t
Where (v-u)/t = a
F = kma.
F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.
Therefore,
F = ma.
From the equation above,
If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.
Shale, sandstone, and limestone are the most commoc types of sedimentary rocks. They are formed by the most common mineral that is found on or near the surface of the Earth
Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour