Answer:
a) 
b) 
c) 
Explanation:
a) In the equilibrium position of the system, that is when the spring is not elongated, the potential energy is zero. Therefore, the total energy of the system is the maximum kinetic energy:

b) The force constant of the spring can be calculated from the natural frequency of the system:

Recall that
, that is the distance traveled in one revolution divided into the time of one revolution. Replacing and solving for k:

c) The maximum speed is directly proportional to the amplitude of the motion:

Answer:
58.8 N
Explanation:
The normal force is calculated as equal to the perpendicular component of the gravitational force.
Thus; N = mg
We are given m = 6 kg
Thus;
N = 6 × 9.8
N = 58.8 N
Thus, magnitude of normal force on the rock = 58.8 N
Im not 100% sure but i think its bromine.
Hope this helps ^_^
Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.