The atomic number of germanium is 32 i.e. 32 protons. The number of protons in the nucleus of atom is called atomic number. Germanium has 32 electrons ( 2 electrons in first orbit, 8 electrons in second orbit, 18 electrons in third orbit and 4 electrons in the outermost orbit.
Answer:
4 biological membranes.
Explanation:
So in total, your water molecule has to go through your cell membrane, reach the outer membrane of your chloroplast and then through the inner membrane, and then lastly, it has to go through your thylakoid membrane to reach its final destination of the illumine. So in total 4 biological membranes.
<span>Carbon can also bond with other
four atoms because of its outer shell (valence shell) that has four electrons.
This is the reason why organic molecules can be so large because of this
bonding. Suppose you have a compound of CCl4. You know that chlorine can only
share 1 electron because 7 of its electrons are filled. Also, in carbon, it can
only share 4 electrons because 4 of it are already filled. That is why carbon
needs four chlorine to form CCl4. The answer is letter <u>B.</u></span>
<u>Answer:</u> The mass of sucrose required is 69.08 g
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
![\pi=iMRT](https://tex.z-dn.net/?f=%5Cpi%3DiMRT)
Or,
![\pi=i\times \frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}\times RT](https://tex.z-dn.net/?f=%5Cpi%3Di%5Ctimes%20%5Cfrac%7B%5Ctext%7BMass%20of%20solute%7D%5Ctimes%201000%7D%7B%5Ctext%7BMolar%20mass%20of%20solute%7D%5Ctimes%20%5Ctext%7BVolume%20of%20solution%20%28in%20mL%29%7D%7D%5Ctimes%20RT)
where,
= osmotic pressure of the solution = 8.80 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (sucrose) = ?
Molar mass of sucrose = 342.3 g/mol
Volume of solution = 564 mL (Density of water = 1 g/mL)
R = Gas constant = ![0.0821\text{ L.atm }mol^{-1}K^{-1}](https://tex.z-dn.net/?f=0.0821%5Ctext%7B%20L.atm%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D)
T = Temperature of the solution = 290 K
Putting values in above equation, we get:
![8.80atm=1\times \frac{\text{Mass of sucrose}\times 1000}{342.3\times 546}\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 290K\\\\\text{Mass of sucrose}=\frac{8.80\times 342.3\times 546}{1\times 1000\times 0.0821\times 290}=69.08g](https://tex.z-dn.net/?f=8.80atm%3D1%5Ctimes%20%5Cfrac%7B%5Ctext%7BMass%20of%20sucrose%7D%5Ctimes%201000%7D%7B342.3%5Ctimes%20546%7D%5Ctimes%200.0821%5Ctext%7B%20L.atm%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D%5Ctimes%20290K%5C%5C%5C%5C%5Ctext%7BMass%20of%20sucrose%7D%3D%5Cfrac%7B8.80%5Ctimes%20342.3%5Ctimes%20546%7D%7B1%5Ctimes%201000%5Ctimes%200.0821%5Ctimes%20290%7D%3D69.08g)
Hence, the mass of sucrose required is 69.08 g
The oxygen family, also called the chalcogens, consists of the elements found in Group 16 of the periodic table and is considered among the main group elements. It consists of the elements oxygen, sulfur, selenium, tellurium and polonium.