Answer:
![[base]=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.28M)
Explanation:
Hello,
In this case, by using the Henderson-Hasselbach equation one can compute the concentration of acetate, which acts as the base, as shown below:
![pH=pKa+log(\frac{[base]}{[acid]} )\\\\\frac{[base]}{[acid]}=10^{pH-pKa}\\\\\frac{[base]}{[acid]}=10^{4.9-4.76}\\\\\frac{[base]}{[acid]}=1.38\\\\](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7BpH-pKa%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D10%5E%7B4.9-4.76%7D%5C%5C%5C%5C%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%3D1.38%5C%5C%5C%5C)
![[base]=1.38[acid]=1.38*0.20M=0.28M](https://tex.z-dn.net/?f=%5Bbase%5D%3D1.38%5Bacid%5D%3D1.38%2A0.20M%3D0.28M)
Regards.
Answer:
Gay-Lussac's Law
Explanation:
The pressure is directly proportional to the absolute temperature under constant volume. This states the Gay-Lussac's law. The equation is:
P1T2 = P2T1
<em>Where P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas.</em>
<em />
That means the right option is:
- Gay-Lussac's Law
the answer you have chosen is correct
Answer:
Esters have lower boiling point than alcohols.
Explanation:
Esters are the fruity smelling compounds which are formed from carboxylic acid and alcohol with the removal of water.
The general formula for the ester is RCOOR' which is prepared from RCOOH acid and R'OH alcohol.
Ester can not form strong hydrogen bond as there is no hydrogen attached to the electronegative atom in the ester and thus cannot form hydrogen bonds with each other.<u> Due to this factor, the interactions within the molecules of the ester is lower than that of alcohols which exist in strong hydrogen bonding. As a result, ester can be easily boiled when compared to the alcohols and thus they have lower value of boiling points.</u>