Answer:
C. The change of internal energy of a system is the sum of work and heat spent on it.
Explanation:
The law of conservation of Energy states that energy cannot be destroyed but can only be converted or transformed from one form to another. Therefore, the sum of the initial kinetic energy and potential energy is equal to the sum of the final kinetic energy and potential energy.
Mathematically, it is given by the formula;
Ki + Ui = Kf + Uf .......equation 1
Where;
Ki and Kf are the initial and final kinetic energy respectively.
Ui and Uf are the initial and final potential energy respectively.
The law of conservation of Energy is another way to describe the law of Thermodynamics. It states that the change of internal energy of a system is the sum of work and heat spent on it.
Mathematically, it is given by the formula;
ΔU = Q − W
Where;
ΔU represents the change in internal energy of a system.
Q represents the net heat transfer in and out of the system.
W represents the sum of work (net work) done on or by the system.
Answer: Look where the points are.
Explanation:
Answer:
There are several options that the teacher can use to incorporate the concept into students' understanding.
Explanation:
1. The students can draw all the plants that they know.
2. Children can be asked to bring the flowers to school so that they can identify the plants themselves.
3. The children can plat the flowers in makeshift pots and then take the best plants and transplant them in the garden or elsewhere.
4. The children can take occasional trips and observe and record any changes to the plants.
4. The teacher can ask the students to draw the flowers and emphasize on the productive parts like the stamens, leaves, pistils, stems.
I think the right answer would be objects pull because gravitational pull is when an object with more mass than an other object would pull the small mass object
Only the masses of the objects and the distance between them. Nothing else affects the gravitational forces. Not even a concrete, steel, and Kryptonite wall between them.