Answer:
Boiling- 212° F melting- 32°F
Explanation:
Answer:
The number ratio is 4:7
Explanation:
Step 1: Data given
Compound 1 has 50.48 % oxygen
Compound 2 has 36.81 % oxygen
Molar mass oxygen = 16 g/mol
Molar mass manganese = 54.94 g/mol
Step 2: Calculate % manganes
Compound 1: 100 - 50.48 = 49.52 %
Compound 2: 100 - 36.81 = 63.19 %
Step 3: Calculate mass
Suppose mass of compounds = 100 grams
Compound 1:
50.48 % O = 50.48 grams
49.52 % Mn = 49.52 grams
Compound 2:
36.81 % O = 36.81 grams
63.19 % Mn = 63.19 grams
Step 4: Calculate moles
Compound 1
Moles O = 50.48 grams / 16.0 g/mol = 3.155 moles
Moles Mn = 49.52 grams / 54.94 g/mol = 0.9013 moles
Compound 2
Moles O = 36.81 grams / 16.0 g/mol = 2.301 moles
Moles Mn = 63.19 grams / 54.94 g/mol = 1.150 moles
Step 5: calculate mol ratio
We will divide by the smallest amount of moles
Compound 1
O: 3.155/0.9013 = 3.5
Mn: 0.9013 / 0.9013 = 1
Mn2O7
Compound 2
O: 2.301 / 1.150 = 2
Mn: 1.150 / 1.150 = 1
MnO2
The number ratio is 2:3.5 or 4:7
Answer : The limiting reagent is 
Solution : Given,
Moles of methane = 2.8 moles
Moles of
= 5 moles
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 mole of
react with 1 mole of 
So, 5 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
Hence, the limiting reagent is 
Answer:
7,94 minutes
Explanation:
If the descomposition of HBr(gr) into elemental species have a rate constant, then this reaction belongs to a zero-order reaction kinetics, where the r<em>eaction rate does not depend on the concentration of the reactants. </em>
For the zero-order reactions, concentration-time equation can be written as follows:
[A] = - Kt + [Ao]
where:
- [A]: concentration of the reactant A at the <em>t </em>time,
- [A]o: initial concentration of the reactant A,
- K: rate constant,
- t: elapsed time of the reaction
<u>To solve the problem, we just replace our data in the concentration-time equation, and we clear the value of t.</u>
Data:
K = 4.2 ×10−3atm/s,
[A]o=[HBr]o= 2 atm,
[A]=[HBr]=0 atm (all HBr(g) is gone)
<em>We clear the incognita :</em>
[A] = - Kt + [Ao]............. Kt = [Ao] - [A]
t = ([Ao] - [A])/K
<em>We replace the numerical values:</em>
t = (2 atm - 0 atm)/4.2 ×10−3atm/s = 476,19 s = 7,94 minutes
So, we need 7,94 minutes to achieve complete conversion into elements ([HBr]=0).