Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be

Option A overweight
HOPE IT HELPS!!
Given Information:
Initial speed = u = 3.21 yards/s
Acceleration = α = 1.71 yards/s²
Final speed = v = 7.54 yards/s
Required Information:
Distance = s = ?
Answer:
Distance = s = 13.61
Explanation:
We are given the speeds and acceleration of the runner and we want to find out how much distance he covered before being tackled.
We know from the equations of motion,
v² = u² + 2αs
Where u is the initial speed of the runner, v is the final speed of the runner, α is the acceleration of the runner and s is the distance traveled by the runner.
Re-arranging the above equation for distance yields,
2αs = v² - u²
s = (v² - u²)/2α
s = (7.54² - 3.21²)/2×1.71
s = 46.55/3.42
s = 13.61 yards
Therefore, the runner traveled a distance of 13.61 yards before being tackled.
Answer:
v_squid = - 2,286 m / s
Explanation:
This exercise can be solved using conservation of the moment, the system is made up of the squid plus the water inside, therefore the force to expel the water is an internal force and the moment is conserved.
Initial moment. Before expelling the water
p₀ = 0
the squid is at rest
Final moment. After expelling the water
= M V_squid + m v_water
p₀ = p_{f}
0 = M V_squid + m v_water
c_squid = -m v_water / M
The mass of the squid without water is
M = 9 -2 = 7 kg
let's calculate
v_squid = 2 8/7
v_squid = - 2,286 m / s
The negative sign indicates that the squid is moving in the opposite direction of the water
It would move to the right because the force is being applied from the left.