I think the answer is B but the problem in this part is that the South American plate has moved over time. You see the difference?
Answer:
h=20.38 m
Explanation:
Given that
Initial speed of object u = 20 m/s
Acceleration 
We know that

Here acceleration and velocity is in opposite direction so the object will come rest after reaching at distance h.When body will reach at its highest position then velocity will become zero(v=0).
Now by putting the values


h=20.38 m
Answer:
A massive object (like a galaxy cluster) bends the light from an object (like a quasar) that lies behind it.
Explanation:
A massive object, like a galaxy cluster, is able to deform the space-time shape as a consequence of its own gravity, so the light that it is coming from a source that is behind it in the line of sight will be bend or distorts in a way that will be magnified, making small arcs around the cluster with the image of the background object.
This technique is useful for astronomers since they make research of faraway objects (at hight redshift) that otherwise will difficult to detect with a telescope.
Answer:
9.6 m
Explanation:
This is a case of motion under variable acceleration . So no law of motion formula will be applicable here. We shall have to integrate the given equation .
a = 3.6 t + 5.6
d²x / dt² = 3.6 t + 5.6
Integrating on both sides
dx /dt = 3.6 t² / 2 + 5.6 t + c
where c is a constant.
dx /dt = 1.8 t² + 5.6 t + c
when t = 0 , velocity dx /dt is zero
Putting these values in the equation above
0 = 0 +0 + c
c = 0
dx /dt = 1.8 t² + 5.6 t
Again integrating on both sides
x = 1.8 t³ / 3 + 5.6 x t² /2 + c₁
x = 0.6 t³ + 2.8 t² + c₁
when t =0, x = 0
c₁ = 0
x = 0.6 t³ + 2.8 t²
when t = 1.6
x = .6 x 1.6³ + 2.8 x 1.6²
= 2.4576 + 7.168
= 9.6256
9.6 m
KE= (1/2) mv²
So, the variables we need to include in our question would be a varable for a mass(m) of an object at some velocity(v).
My Answer:
(This is just an example question, yours can be different)
What is the Kinetic Energy experienced by an bouncy ball rolling at 7m/s (that's your velocity) across a frictionless surface that has a mass(m) of 10 grams?