First, we determine the mass of each element from the data collected. We can get the mass of molybdenum Mo from the difference between the mass of crucible and molybdenum and the mass of crucible:
Mass of molybdenum = 39.52 – 38.26 = 1.26 g Mo
We can calculate for the mass of molybdenum oxide from the difference between the mass of crucible and molybdenum oxide and the mass of crucible:
Mass of molybdenum oxide = 39.84 – 38.26 = 1.58g
We can now compute for the mass of oxygen O by subtracting the mass of molybdenum from the mass of molybdenum oxide:
Mass of oxygen in molybdenum oxide = 1.58 – 1.26 = 0.32g O
To convert mass to moles, we use the molar mass of each element.
1.26 g Mo * 1 mol Mo / 95.94 g Mo = 0.0131 mol Mo
0.32 g O * 1 mol O / 15.999 g O = 0.0200 mol O
0.0131 mol is the smallest number of moles. We divide each mole value by this number:
0.0131 mol Mo / 0.0131 = 1
0.0200 mol O / 0.0131 = 1.53
Multiplying these results by 2 to get the lowest whole number ratio,
0.0131 mol Mo / 0.0131 = 1 * 2 = 2
0.0200 mol O / 0.0131 = 1.5 * 2 = 3
Thus, we can write the empirical formula as Mo2O3.
In a typical double displacement reaction, you would have a total of two products (AB + CD —> AD + BC).
Hi , NaCl is basically salt , Na for sodium and Cl for chlorine , these elements make Sodium Chloride .The bond between them is ionic.
Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
The correct answer is false. The statement given does not describe a property in general. However, it speaks of a specific type of property which is the physical property. This property is the one that does not change the identity of a substance. A property can also be a chemical property where the identity of a substance is changed.