There are no choices on the list you provided that make such a statement,
and it's difficult to understand what is meant by "the following".
That statement is one way to describe the approach to 'forces of gravity'
taken by the theory of Relativity.
A billiard ball moves with 3 kg⋅m/s of momentum and strikes three other billiard balls that have been just sitting there at rest and not moving.
The total momentum of all four balls after the collision is <em>3 kg⋅m/s</em>, because momentum is not created or destroyed. The total amount of it after an event is the same as the total amount of it before the event.
Answer:
Explanation:
Atmospheric pressure = 7 x 10⁴ Pa
force on a disk-shaped region 2.00 m in radius at the surface of the ocean due to atmosphere = pressure x area
= 7 x 10⁴ x 3.14 x 2 x 2
= 87.92 x 10⁴ N
b )
weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m
Pressure x area
height x density x acceleration of gravity x π r²
= 10 x 415 x 6.2 x 3.14 x 2 x 2
=323168.8 N
c ) Pressure at a depth of 10 m
atmospheric pressure + pressure due to liquid column
= 7 x 10⁴ + 10 x 415 x 6.2 ( hρg)
= 7 x 10⁴ + 10 x 415 x 6.2
(7 + 2.57 )x 10⁴ Pa
9.57 x 10⁴ Pa
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.