Answer: False
Explanation:
Winds are named for the cardinal direction they blow from. Hence, a wind that <em>"blows towards the east"</em>, logically should <u>come from the west </u>and is called a <em>"west wind"</em>.
In thise sense, one of the best examples of this type of wind are the <em>Westerlies</em>, which are are prevailing winds that blow from the west at midlatitudes and have the characteristic that are stronger during winter and weaker during summer.
Therefore, the statement is false.
Answer:
A) reduced air pressure on the ball.
Explanation:
Answer:
(C). The line integral of the magnetic field around a closed loop
Explanation:
Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux.
This can be written mathematically as;

is the rate of change of the magnetic flux through a surface bounded by the loop.
ΔФ = BA
where;
ΔФ is change in flux
B is the magnetic field
A is the area of the loop
Thus, according to Faraday's law of electric generators
∫BdL =
= EMF
Therefore, the line integral of the magnetic field around a closed loop is equal to the negative of the rate of change of the magnetic flux through the area enclosed by the loop.
The correct option is "C"
(C). The line integral of the magnetic field around a closed loop
Answer:
v = 4.76 m/s
Explanation:
Given,
The distance traveled by her bike, d = 10 miles
The time of her travel, t = 2.1 m/s
The velocity of an object is defined as the distance traveled by the object to the time of travel. Therefore,
V = d/t m/s
= 10 / 2.1
= 4.76 m/s
Hence, The velocity of her bike is, V = 4.76 m/s