-ZERO- No 17.6 pound Earth-bound cat is going to be able to jump to the top of a 6 feet 7 inch bookshelf unassisted! Someone should call the SPCA on the writer of this textbook question ;-)
Assuming that this overweight cat is content being placed in such a lofty position, your professor probably wants the answer of <u>156.8 Joules</u>
Mass x Acceleration of Gravity (on Earth) x elevation = Potential Energy
8 Kg x 9.8 m/s2 x 2 m = 156.8 J
Answer:
A. True
Explanation:
This is because these aircraft experiences different types of vibrations which include buffet vibrations and aerodynamic flutter. Buffet vibrations are vibrations caused by an interruption of airflow. Buffet vibrations are usually felt when the aerodynamic brakes are applied.
Aeroelastic flutter is the most dangerous type of vibration. This occurs when energy added to the wings due to airflow is greater than that lost due to damping. Aeroelastic flutter can cause aircraft to fail when the vibrations are large enough.
Answer:

Explanation:
The formula to find average acceleration is a=Δv/Δt.
Convert 216 km/hr to m/s
216 km/hr * 1000 m/km * 1 hr/60 mins * 1 min/60 secs = 60 m/s
So a= (60 m/s)/(5.0*10^-3) = 12000 m/s^2
Put that into scientific notation to get 1.2*10^4 m/s^2
Answer:
<h2>2 kg</h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>2 kg</h3>
Hope this helps you
Answer:
a) The answer is 11,7m
b) The time it takes to fall will be shorter
Explanation:
We will use the next semi-parabolic movement equations
Where g(gravity acceleration)=9,81m/s^2
Also Xi, Hi and Viy are zero, as the stones Billy-Jones is kicking stay still before he moves them, so we take that point as the reference point
The first we must do is to find how much time the stones take to fall, this way:
Then t=1,54s
After that we need to replace t to find H, this way
Then H=11,7m
b) The stones will fall faster as the stones will be kicked harder, it will cause the stones move faster, it means, more horizontal velocity. In order to see it better we could assume the actual velocity is two times more than it is, so it will give us half of the time, this way:
Then, t=0,77