<span>a thin fibrous cartilage between the surfaces of some joints, e.g., the knee.</span>
<h3><u>Answer;</u></h3>
Period = 1/17 seconds
<h3><u>Explanation;</u></h3>
- Wavelength is related to period by the expression:
<em>speed = wavelength / period
</em>
- If we are given the speed, then we can easily calculate the period at the wavelength of 20 m.
<em>Given the speed of sound wave as 340 m/s </em>
<em>Period = Wavelength/ speed</em>
<em> = 20 m/340 m/s</em>
<em> </em><u><em>= 1/17 seconds</em></u>
Answer:
They both rises to same height.
Explanation:
When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.
Here the height is independent on the mass of an object and its only depend on velocity.
Now according to the question, two objects have same velocity but they have different masses.
Therefore, they rises to the same height because height will not change with mass.
Answer:
The input force (effort) is the amount of effort used to push down on a rod, or pull on a rope in order to move the weight. In this example, the force the little guy is using to pull the elephant is the input force.
Explanation:
Answer: The softer barrier is the better option
Explanation:
1) When is a car is moving at a certain speed, it has a certain amount of momentum (p=mv). A collision against a barrier would cause its momentum to decrease to 0. A change in momentum is Impulse
2) The formula for Impulse: J = f * Δt
J is Impulse
f is the force applied during the time Δt
A tough barrier would produce a smaller Δt, which means more force is applied on the car. (J is always constant)
A softer barrier would apply less force on the car, which means Δt is large.
Answer: The softer barrier is the better option