Answer:

Explanation:
according to snell's law

refractive index of water n_w is 1.33
refractive index of glass n_g is 1.5


now applying snell's law between air and glass, so we have


![\beta = sin^{-1} [\frac{n_g}{n_a}*sin\alpha]](https://tex.z-dn.net/?f=%5Cbeta%20%3D%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_g%7D%7Bn_a%7D%2Asin%5Calpha%5D)
we know that 

Answer:
23.52 m/s
Explanation:
The following data were obtained from the question:
Time taken (t) to reach the maximum height = 2.4 s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =..?
At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)
was thrown as follow:
v = u – gt (since the rock is going against gravity)
0 = u – (9.8 × 2.4)
0 = u – 23.52
Collect like terms
0 + 23.52 = u
u = 23.52 m/s
Therefore, the rock was thrown at a velocity of 23.52 m/s.
The needle on a compass always points in the direction of magnetic north because of the magnetic poles of earth. the compass is essentially a magnet itself, so the southern pole of the compass is attracted to the northern pole of earth.
The answer would be 981 newtons or 220.46 pounds.
Answer:
Answer:
New speed of the 22-kg block is 1.57 m/s
Explanation:
Mass of block
Mass of another block
Initial speed of the block
Initial speed of the another block
Initial speed of the another block
For conservation of momentum, we have
Substitute all the values and solving for final speed of the 22kg block is
new speed of the 22-kg block is 1.57 m/s
Couldnt write the answer so check picture