1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
10

A worker assigned to the restoration of the Washington Monument is checking the condition of the stone at the very top of the mo

nument. A nickel with the mass of 0.005 kg is in her shirt pocket. What is the kinetic energy (KE) of the nickel in her shirt pocket at the top of the monument?
Physics
1 answer:
Mnenie [13.5K]3 years ago
7 0

Answer:

Your answer is: K.E = 8.3 J

Explanation:

If the height (h) = 169.2 meters (m) and the mass (m) is 0.005 kilograms (kg) the total energy will be kinetic energy which is equal to the potential energy.

K.E = P.E and also P.E equals to mgh

Then you substitute all the parameters into the formula  ↓

P.E = 0.005 × 9.81 × 169.2

P.E = 8.2908 J

So your answer is 8.2908 but if you round it is K.E = 8.3

You might be interested in
A gymnast of mass 62.0 kg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume t
MrRissso [65]

Answer:

a) T = 608.22 N

b) T = 608.22 N

c) T = 682.62 N

d) T = 533.82 N

Explanation:

Given that the mass of gymnast is m = 62.0 kg

Acceleration due to gravity is g = 9.81 m/s²

Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.

So;

To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;

T = mg

= (62.0 kg)(9.81 m/s²)

= 608.22 N

When the gymnast climbs the rope at a constant rate tension in the string is

= (62.0 kg)(9.81 m/s²)

= 608.22 N

When the gymnast climbs up the rope with an upward acceleration of magnitude

a = 1.2 m/s²

the tension in the string is  T - mg = ma (Since acceleration a is upwards)

T = ma + mg

= m (a + g )

= (62.0 kg)(9.81 m/s² + 1.2  m/s²)

= (62.0 kg) (11.01 m/s²)

= 682.62 N

When the gymnast climbs up the rope with an downward acceleration of magnitude

a = 1.2 m/s² the tension in the string is  mg - T = ma (Since acceleration a is downwards)

T = mg - ma

= m (g - a )

= (62.0 kg)(9.81 m/s² - 1.2 m/s²)

= (62.0 kg)(8.61 m/s²)

= 533.82 N

5 0
3 years ago
Which are characteristics of mammals? Check all that apply.
Neporo4naja [7]

Answer:

one of the characteristics of a mammal is their several hollow bones another is their three chambered heart and the last is highly developed nervous system

Explanation:

the reason i picked those three is because not all mammals live their life on land and also mammals font have internal fertillization when they are done they take care of their babies and when they grow up they live their own life

6 0
3 years ago
Mitch throws a 100-g lump of clay at a 500-g target, which is at rest on a horizontal surface. After impact, the target, includi
max2010maxim [7]

Answer:

27.22 m/s

Explanation:

Let the speed of clay before impact is u.

the speed of clay and target is v after impact.

use conservation of momentum

momentum before impact  momentum after impact

mass of clay x u = (mass of clay + mass of target) x v

100 x u = (100 + 500) x v

u = 6 v .....(1)

distance, s = 2.1 m

μ = 0.5

final velocity is zero. use third equation of motion

v'² = v² + 2as

0 = v² - 2 x μ x g x s

v² = 2 x 0.5 x 9.8 x 2.1 = 20.58

v = 4.54 m/s

so by equation (1)

u = 6 x 4.54 = 27.22 m/s

thus, the speed of clay before impact is 27.22 m/s.

3 0
3 years ago
You pull with a force of 295 N on a rope that is attached to a block of mass 22 kg, and the block slides across the floor at a c
Sergeeva-Olga [200]

Answer:

Fnet = 0

Explanation:

  • Since the block slides across the floor at constant speed, this means that it's not accelerated.
  • According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.
  • This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:

       F_{appx} = F_{app} * cos \theta = 295 N * cos 35 = 242 N  (1)

  • In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:

      F_{appy} = F_{app} * cos \theta = 295 N * sin 35 = 169 N  (2)

⇒    169 N + Fn = Fg = 216 N  (3)

  • This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:
  • Fn = 216 N - 169 N = 47  N (4)

6 0
3 years ago
Suzette had prepared the graph below to add to her lab
Charra [1.4K]

Answer:

A title

Explanation:

Because this is middle school.

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the momentum of an object that is traveling at 3 m/s and has a mass of 5 kg?
    5·1 answer
  • Define Laws of motion
    15·2 answers
  • Why intermediate elements has negative packing fraction?
    13·1 answer
  • ListenA bicycle and its rider have a combined mass of 80. kilograms and a speed of 6.0 meters per second. What is the magnitude
    12·1 answer
  • An Object moving in a liquid experiences a linear drag force: D= (bv, direction opposite the motion), where b is constant called
    9·1 answer
  • Describe how the metal case of an electrical appliance is connected to earth
    5·2 answers
  • How is a light wave likely to react when hitting a shiny opaque object?
    6·1 answer
  • Does chess make you smarter?
    11·1 answer
  • A small hole is made at the bottom of a plastic cup. If it is filled with water and allowed to fall freely, will waterfall down
    14·2 answers
  • Tin shear have longer handles than than the scissor used to cut cloth give reason​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!