Answer:
Rubber is an insulator.
Explanation:
Rubber is an insulator. Electricity will always travel "the path of least resistance." Rubber has a very high resistance, so electricity will go somewhere else to find ground.
Answer:
B:The actual power dissipated by the resistor is less than P because the ammeter had some resistance.
Explanation:
Here,power has been calculated using current I and total EMF \ε . So,P=EMF*current= ε I will represent total power dissipated in resistor and ammeter.
Now, this total power P has been dissipated in both resistor and ammeter. So, power dissipated in resistor must be less than P as some power is also dissipated in ammeter because it has non-zero resistance.
So, the answer is B:The actual power dissipated by the resistor is less than P because the ammeter had some resistance.
Note that option A,C and E are ruled out as they state power dissipated by resistor is greater than or equal to P which is false.
Also,option D is ruled out as ammeter is connected in series.
Initial Velocity is the velocity at time interval t = 0 and it is represented by u. It is the velocity at which the motion starts. They are four initial velocity formulas: (1) If time, acceleration and final velocity are provided, the initial velocity is articulated as. u = v – at.