The total mechanical energy of the ball is the sum of its potential energy U and its kinetic energy K, therefore:

so, the total mechanical energy of the basketball is 118 J.
The energy added here is potential energy since it is moving upward 180 meters in a gravitational field. This is then turned into KE when it rolls down. 2524N x 180m = 454,320J
Answer:
Fc = 89.67N
Explanation:
Since the rope is unstretchable, the total length will always be 34m.
From the attached diagram, you can see that we can calculate the new separation distance from the tree and the stucked car H as follows:
L1+L2=34m
Replacing this value in the previous equation:
Solving for H:

We can now, calculate the angle between L1 and the 2m segment:

If we make a sum of forces in the midpoint of the rope we get:
where T is the tension on the rope and F is the exerted force of 87N.
Solving for T, we get the tension on the rope which is equal to the force exerted on the car:

Answer:

Explanation:
Given that,
Mass of the bowling ball, m = 5 kg
Radius of the ball, r = 11 cm = 0.11 m
Angular velocity with which the ball rolls, 
To find,
The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball.
Solution,
The translational kinetic energy of the ball is :



The rotational kinetic energy of the ball is :



Ratio of translational to the rotational kinetic energy as :

So, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is 5:2
You pick a system for which no control sample exists, so that no one can show that the alleged causal relationships you assert do not, in fact, lead to the phenomenon you claim to have observed.