The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2
Answer:
As voltage increases, current increases and resistance stays the same
.
Explanation:
Ohm's law gives the relationship between the voltage, resistance, and current. The mathematical form of Ohm's law is given by :

R is resistance
I is current
V is voltage
So, as voltage increases, current increases and resistance stays the same. The correct option is (A).
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
True
Explanation
When an object slows down the Acceleration is in the other direction which “ slows it down