Explanation:
Given that,
Initial speed of the bag, u = 7.3 m/s
Height above ground, s = 24 m
We need to find the speed of the bag just before it reaches the ground. It can be calculated using third equation of motion as :


v = 22.88 m/s
So, the speed of the bag just before it reaches the ground is 22.38 m/s. Hence, this is the required solution.
Answer:
Apparent depth = 45 cm
Explanation:
The refractive index of water in a pool, n = 4/3
Real depth, d = 60 cm
We need to find its apparent depth when viewed vertically through air. The ratio of real depth to the apparent depth is equal to the refractive index of the material. Let the apparent depth is d'. So,

So, the apparent depth is 45 cm.
Answer:
Explanation:
Given
Volume of paint is 
Area of cover 
Suppose paint to be a rectangular box with thickness t and volume V
therefore we can write as




Answer:
book speed is 3.99 m/s
Explanation:
given data
mass m = 490 g = 0.490 kg
compressing x = 7.10 cm = 0.0710 m
spring constant k = 1550 N/m
to find out
book speed
solution
we know energy is conserve so
we can say
loss in spring energy is equal to gain in kinetic energy
so
..................1
put here value
v = 3.99 m/s
so book speed is 3.99 m/s
Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m