According to this equation
F = G × m₁*m₂ ÷ r²
other than the mass, the distance also affects the gravitational force between two objects (same mass or not).
Therefore the correct answer is B. The distance between the objects
Future note* use formulas to help you figure these sort of questions out. (if they have a formula to begin with).
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
Answer:
The option is B is not true for Hubble telescope.
Answer:
it ends when clouds above start to break apart. Some tornadoes only last seconds. Others can last much longer. They come in many shapes and sizes.