Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
<span>which of those can we not get back once it has been used, the answer is oil or petroleum</span>
Answer:
thermometer
Explanation:
the thermometer measures temp.
Answer:

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
♨ Question :
- A car starts from rest and is moving at 60.0 m/s after 7.50 s. What is the car's average acceleration ?
♨ 
☄ Given :
- Initial velocity ( u ) = 0
- Final velocity ( v ) = 60.0 m/s
- Time ( t ) = 7.50 s
☄ To find :
✒ We know ,

Substitute the values and solve for a.
➛ 
➛ 
➛ 
---------------------------------------------------------------
✑ Additional Info :
- When a certain object comes in motion from rest , in the case , initial velocity ( u ) = 0
- When a moving object comes in rest , in the case , final velocity ( v ) = 0
- If the object is moving with uniform velocity , in the case , u = v.
- If any object is thrown vertically upwards in the case , a = -g
- When an object is falling from certain height , in the case , final velocity at maximum height ( v ) = 0.
Hope I helped!
Have a wonderful time ツ
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Answer:
TRUE?
Explanation:
Im not really sure what your question is.