Answer: F = 2N
Explanation: If a current i is flowing in a wire of length L lying in a region of magnetic field B, then the magnetic force acting on the wire is given by
F = BIL
Please find the attached file for the solution
Explanation:
It is given that,
Speed of the sports car, v = 85 mph = 37.99 m/s
The radius of curvature, r = 525 m
Let
is the normal weight and
is the apparent weight of the person. Its apparent weight is given by :

So, 



or

Hence, this is the required solution.
Answer:

Explanation:
= Force on one side of the door by first waiter = 257 N
= Force on other side of the door by second waiter
= distance of first force by first waiter from hinge = 0.567 m
= distance of second force by second waiter from hinge = 0.529 m
Since the door does not move. hence the door is in equilibrium
Using equilibrium of torque by force applied by each waiter

Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
Energy. They need energy.
Explanation: