222 grams of calcium chloride is produced.
<h3><u>Explanation</u>:</h3>
The mole concept and the chemical equation are very much closely related with each other. In the chemical reaction, the compounds or elements in both sides are balanced according to the number of atoms of each side of the reaction. So from there we can easily find the amount of reactant reacts to produce desired product.
Here we can see that 2 moles of sodium chloride produces 1 mole of calcium chloride.
So, 4 moles of sodium chloride will produce 2 moles of calcium chloride.
Now, atomic weight of calcium =40.
Atomic weight of chlorine =35.5.
So,the molecular weight of calcium chloride = 
=111.
It means, 1 mole of calcium chloride weighs 111 grams.
So 2 moles of calcium chloride weighs
grams = 222 grams.
a is the correct answer .
2.4 × 10^24
The Oxyfuel gas or flame refers to a group of welding processes that use the flame produced by the combination of a fuel gas and oxygen as the source of heat.
<u>Explanation:</u>
- Oxy-fuel welding is a process that utilizes fuel gases and oxygen to weld metals. Oxyfuel gas or flame refers to a group of welding processes that utilize the flame delivered by the blending of fuel gas and oxygen as the source of heat.
- This flame is utilized for cutting and welding of two metallic pieces. This is done due to the heat produced by cutting and welding of two metallic pieces together by heating to the melting point.
- An oxyhydrogen flame is utilized for cutting and welding of two metallic pieces due to the heat produced by the flame, i.e, 2800 ° C. At this temperature, the metal gets softened effectively and thus it can easily separate or welded together.
The melting point of potassium = 
Melting point of titanium = 
Titanium has a stronger metallic bonding compared to potassium. Titanium being a transition metal has greater number of valence electrons (4 valence electrons) contributing to the valence electron sea compared to potassium which has only one valence electron. The atomic size of Titanium much lower than that of potassium, so the bonding between Titanium atoms is stronger than that of potassium. Hence, the melting point of Titanium is much higher than that of potassium.