Answer:
The final temperature is 31.95° C.
Explanation:
Given that,
Initial temperature of a sample of chloroform, 
Mass of chloroform, m = 150 g
It absorbs 1 kJ of heat, Q = 10³ J
The specific heat of chloroform, c = 00.96 J/gºC
We need to find the final temperature. The heat absorbed by an object in terms of specific heat is given by :

So, the final temperature is 31.95° C.
Answer:
Explanation:
C decays by a process called beta decay. During this process, an atom of 14C decays into an atom of 14N, during which one of the neutrons in the carbon atom becomes a proton. This increases the number of protons in the atom by one, creating a nitrogen atom rather than a carbon atom.
Step 1: Write the unbalanced equation,
C₂H₆ + O₂ → CO₂ + H₂<span>O
There are 2 C at left hand side and 1 carbon at right hand side. So, multiply CO</span>₂ by 2 to balance C atoms at both side. So,
C₂H₆ + O₂ → 2 CO₂ + H₂O
Now, count number of H atoms at both sides. There are 6 H atoms at left hand side and 2 at right hand side. Multiply H₂O by 3 to balance H atoms.
C₂H₆ + O₂ → 2 CO₂ + 3 H₂O
At last, balance O atoms. There are 2 O atoms at left hand side and 3 O atoms at right hand side. Multiply O₂ with 1.5 (i.e. 3/2) to balance O atoms. i.e.
C₂H₆ + 3/2 O₂ → 2 CO₂ + 3 H₂O
Hence, the equation is balanced. If you want to make equation fraction free then multiply all equation with 2. i.e.
( C₂H₆ + 3/2 O₂ → 2 CO₂ + 3 H₂O ) × 2
2 C₂H₆ + 3 O₂ → 4 CO₂ + 6 H₂O
Technically, the answer is iron. Oxygen has a melting point way below zero (-219 degrees celsius), ice becomes water AT room temperature and bromine is already a liquid at room temperature. So, iron has a melting point greater than room temperature due to the fact that metals are made up of giant structures of atoms in a regular arrangement, and there are strong forces of electrostatic attraction between positive metal ions and negative electrons, meaning that a lot of heat energy is required to break the bonds, i.e. a very high melting point, approx. 1500 degrees celsius. Hope this helps.