Answer : The molar heat of solution of KCl is, 17.19 kJ/mol
Explanation :
First we have to calculate the heat of solution.

where,
q = heat produced = ?
c = specific heat capacity of water = 
= change in temperature = 0.360 K
Now put all the given values in the above formula, we get:


Now we have to calculate the molar heat solution of KCl.

where,
= enthalpy change = ?
q = heat released = 460.8 J
m = mass of
= 2.00 g
Molar mass of
= 74.55 g/mol

Now put all the given values in the above formula, we get:


Therefore, the molar heat of solution of KCl is, 17.19 kJ/mol
Answer is: the percent by mass of NaHCO₃ is 2,43%.
m(NaHCO₃) = 10 g.
V(H₂O) = 400 ml.
d(H₂O) = 1 g/ml.
m(H₂O) = V(H₂O) · d(H₂O).
m(H₂O) = 400 ml · 1 g/ml.
m(H₂O) = 400 g.
m(solution) = m(H₂O) + m(NaHCO₃).
m(solution) = 400 g + 10 g.
m(solution) = 410 g.
ω(NaHCO₃) = 10 g ÷ 410 g · 100%.
ω(NaHCO₃) = 2,43 %
The third question requires you to solve for the weight of sodium (Na) and weight of Chloride (Cl) from the calculated moles of each element Na, and Cl.
So, you need to multiply the calculated moles of Na with its molar mass (23 g/ mol) to get the answer for Na. And multiply the calculated moles of Cl with its molar mass (35.45 g/mol) to get the answer for Cl.