Thank you for your question, what you say is true, the gravitational force exerted by the Earth on the Moon has to be equal to the centripetal force.
An interesting application of this principle is that it allows you to determine a relation between the period of an orbit and its size. Let us assume for simplicity the Moon's orbit as circular (it is not, but this is a good approximation for our purposes).
The gravitational acceleration that the Moon experience due to the gravitational attraction from the Earth is given by:
ag=G(MEarth+MMoon)/r2
Where G is the gravitational constant, M stands for mass, and r is the radius of the orbit. The centripetal acceleration is given by:
acentr=(4 pi2 r)/T2
Where T is the period. Since the two accelerations have to be equal, we obtain:
(4 pi2 r) /T2=G(MEarth+MMoon)/r2
Which implies:
r3/T2=G(MEarth+MMoon)/4 pi2=const.
This is the so-called third Kepler law, that states that the cube of the radius of the orbit is proportional to the square of the period.
This has interesting applications. In the Solar System, for example, if you know the period and the radius of one planet orbit, by knowing another planet's period you can determine its orbit radius. I hope that this answers your question.
A particle that is smaller than an atom or a cluster of particles.
Answer:
The difference between the two is, well for one
Spectrum: The entire range that the "waves" could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
It may confuse you but it makes sense to me (Sorry)
Explanation:
Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s