I'm not sure if a figure or some choices go along with this, but the closer to the sea floor the diver is, the lower the potential energy
No se ha da han dicho nada más de lo dicho y han ido de vuelta y han dicho nada más de que se pueda hacer el favor del niño
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
They have some but not very much, the particles in the ice are still vibrating just not as much as in water. the only time a substance would have 0 kinetic energy is when that substance is at 0 degrees kelvin(absolute zero) so far no place in the universe has been recorded at absolute zero though
B
paired electrons spin in opposite directions cancelling their magnetic fields