The formula for density is:
D = m/v
We can use the formula to figure out the mass because we already know two of the three values (we are given the density and volume), so we only have to solve for <em>m. </em>If we plug our given values into the formula, we get:
2.70 = m / 264
Now, all we need to do is solve for <em>m</em>. The goal is to get <em>m</em> on one side of the equation, and all we have to do is multiply each side of the equation by 264:
264 × 2.70 = (m÷264) × 264
264 × 2.70 = m
m = 712.8
The mass of the piece of aluminum is 712.8 grams.
Answer:
3 years
Explanation:
Given data:
Initial amount of sample = 160 Kg
Amount left after 12 years = 10 Kg
Half life = ?
Solution:
at time zero = 160 Kg
1st half life = 160/2 = 80 kg
2nd half life = 80/2 = 40 kg
3rd half life = 40 / 2 = 20 kg
4th half life = 20 / 2 = 10 kg
Half life:
HL = elapsed time / half life
12 years / 4 = 3 years
The Lyman series can be expressed in the formula <span><span>1/λ</span>=<span>RH</span><span>(1−<span>1/<span>n2</span></span>) where </span><span><span>RH</span>=1.0968×<span>107</span><span>m<span>−1</span></span>=<span><span>13.6eV</span><span>hc
</span></span></span></span>Where n is a natural number greater than or equal to 2 (i.e. n = 2,3,4,...). Therefore, the lines seen in the image above are the wavelengths corresponding to n=2 on the right, to n=∞on the left (there are infinitely many spectral lines, but they become very dense as they approach to n=∞<span> (Lyman limit), so only some of the first lines and the last one appear).
The wavelengths (nm) in the Lyman series are all ultraviolet
:2 3 4 5 6 7 8 9 10 11
Wavelength (nm) 121.6 102.6 97.3 95 93.8 93.1 92.6 92.3 92.1 91.9 91.18 (Lyman limit)
In your case for the n=5 line you have to replace "n" in the above formula for 5 and you should get a value of 95 x 10^-9 m for the wavelength. then you have to use the other equation that convert wavelength to frequency. </span>
Answer:
D.
The concentration of reactants and the concentration of products are constant.
Explanation:
pls mark as brainliest
1. How is the modern periodic table organized? Increasing atomic number
2. What information about an atom's properties can you read from the periodic table? Metal or not metal. Does it want to gain or lose electrons
3. How are the relationships of elements in a group different from the relationships of elements in a period? a group will have similar properties A period will have different properties
4. Would you expect Strontium (Sr) to be more like potassium (K) or bromine (Br)?
potassium
5. Barium (Ba) is in Group 2. Recall that atoms in Group 1 lose one electron to form ions with a 1+ charge. What type of ion does barium form? Ba+2