So there are different ways this could be solved. I'll do try to explain it the way I was taught...
Simon is riding his bike at 12 km/hr relative to the sidewalk, away from where Keesha is.
Simon throws the ball at Keesha, at 5 km/hr.
Keesha sees the ball approaching her at (12-5) = 7 km/hr relative to the ground to her.
Therefore the answer is: 7 km/hr
Answer:
-2200 N
Explanation:
The change in momentum of Sarah is equal to the impulse, which is the product between the force exerted by the seatbelt on Sarah and the time during which the force is applied:
where
m is the mass
is the change in velocity
F is the average force
is the duration of the collision
In this problem:, we have:
m = 55 kg is Sarah's mass
is the change in velocity
is the duration of the collision
Solving for F, we find the force exerted by the seatbelt on Sarah:
Where the negative sign indicates that the direction of the force is opposite to that of Sarah's initial velocity.
Answer:
1.52 nm
Explanation:
Using the De Broglie wavelength equation,
λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s
So, λ = h/p
λ = h/mv
substituting the values of the variables into the equation, we have
λ = h/mv
λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)
λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)
λ = 0.1518 × 10⁻⁸ m
λ = 1.518 × 10⁻⁹ m
λ = 1.518 nm
λ ≅ 1.52 nm
Stars form from an accumulation of gas and dust, which collapses due to gravity and starts to form stars. Stars are typically classified by their spectrum in what is known as the Morgan-Keenan or MK system.
That is very true, but what is the question asking you.