The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.
Location ' x ' is √(2² + 3²) = √13 m from the charge.
Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.
The magnitude of the E-field is the same at both locations.
The direction is also the same at both locations ... it points toward the origin.
Answer:
1.2 rad/s
Explanation:
m1 = 15 g, m2 = 9 g, ω1 = 0.75 rad/s
Let the new angular speed is ω2 and the radius of the table be r.
The angular momentum is conserved when no external torque is applied.
I1 ω1 = I2 ω2
(m1 + m2)x r^2 x 0.75 = m1 x r^2 x ω2
(15 + 9) x 0.75 = 15 x ω2
ω2 = 1.2 rad/s
Answer:
<h2>Kilometer (km) and micrometer (um) respectively</h2>
Explanation:
<h3>One thousand meters is equal to one kilometer represented as km. </h3>
and
<h3>One thousandth of a meter mean 1/1000 m which implies one thousands part of a meter which is equal to micro meter and represented as um.</h3>
Answer:4.32Nm
Explanation:
The magnitude of the torque will be the product of the force and its perpendicular distance from the force.
Force = 27N
Perpendicular distance = 16cm = 0.16m
Torque = 27×0.16
Torque = 4.32Nm