Answer:
B) changing position
Explanation:
When a ball bounces to the ground it hits the ground with some energy. The amount of energy with which it hits the ground is kinetic energy. When it comes in the contact with the ground kinetic energy gets converted into potential energy. This potential energy again gets converted into kinetic energy and balls moves again from the ground and bounces multiple times. So, due to multiple bounce the position of the ball changes.
Thus, When bouncing a ball, the bouncing motion results in the ball changing position.
Applying the ideal gas equation:
PV = nRT
PV = (mass/Mr)RT
mass = PVMr/RT
mass = (101325 x 4672.2 x 4) / (8.314 x 297)
= 766887.3 kg
= 7.7 x 10⁵ kg
Answer: M = 6.13 × 10^18 kg
Explanation:
g = GM/r2,
Where
The mass M of the asteroid = ?
The radius r = 110000 m
g = 0.0338 m/s^2
G is the gravitational constant.
SI units its value is approximately 6.674×10^−11m3⋅kg−1⋅s−2
Using the formula
g = GM/r2
Cross multiply
GM = gr^2
6.674×10^-11M = 0.0338 × 110000^2
M = 408×10^6/6.674×10^-11
M = 6.13 × 10^18 kg
Answer:
(a) V = 36 v
(b) V = 18v
Explanation:
Check the attached file for the explanation