Answer:
Her speed is 9.8 meter per second
Explanation:
Newton's second law states that acceleration (a) is related with force (F) by:
(1)
Here the only force acting on the firefighter is the weight F=mg so (1) is:
Solving for a:

Now with the acceleration we can use the Galileo's kinematic equation:
(2)
With Vf the final velocity, Vo the initial velocity and Δx the displacement, because the firefighter stars from rest Vo=0 so (2) is:

Solving for Vf


Answer:
Some work input is lost to friction
Explanation:
The efficiency of a machine is defined as:
(1)
where
is the work output
is the work input
Due to the law of conservation of energy, the work output can never be larger than the work input (because energy cannot be created). Moreover, in real machines part of the work input is lost due to the presence of frictions: as a result, part of the energy in input is converted into thermal energy or other forms of energy, and so the work output is smaller than the work input, and so the ratio (1) becomes less than 1, and so the efficiency is less than 100%.
Lean your shoulders back and your waist forwards. Use your arms as a counter weight.
With the use of equation V= IR you are able to solve this probelm
So V=IR
V= 1.2 × 40
V =48v