Answer:
0.9612 g
Explanation:
First we <u>calculate how many moles are there in 3.00 g of CCl₃F</u>, using its <em>molar mass</em>:
- 3.00 g CCl₃F ÷ 137.37 g/mol = 0.0218 mol CCl₃F
Now, we need to calculate how many grams of N₂O would have that same number of molecules, or in other words, <em>the same amount of moles</em>.
Thus we <u>calculate how many grams would 0.0218 moles of N₂O weigh</u>, using the <em>molar mass of N₂O</em> :
- 0.0218 mol N₂O * 44.013 g/mol = 0.9612 g N₂O
Answer:
Explanation:
Hello,
In this case, for the given reaction at equilibrium:
We can write the law of mass action as:
That in terms of the change due to the reaction extent we can write:
Nevertheless, for the carbon monoxide, we can directly compute as shown below:
Finally, we can compute the equilibrium constant:
Best regards.
It will go over the amount it needs to.
Answer:
Here are some of the differences between a mixture of iron and sulfur, and iron sulfide: the mixture can contain more or less iron, but iron sulfide always contains equal amounts of iron and sulfur. the iron and sulfur atoms are not joined together in the mixture, but they are joined together in iron sulfide.
Explanation:
Answer:
The density of the swimmer is 0.0342 lbm/in3.
This value makes sense as the density of the body is very similar to the water.
Explanation:
If the swimmers is floating, the weight of the swimmer must be equal to the upward buoyant force.
We can express the weight force as the product of density and volume of the swimmer.
Then
It makes sense as the density of the body is very similar to the water.