Sorry to say but I know that t(e introduction is first and the coda is last
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
As you know, plants are usually green<span>, which means that most other colors are absorbed. One of the most common pigments is called chlorophyll, and one of the varieties is responsible for the </span>green<span> color of plants; it strongly absorbs </span>blue<span> and </span>red<span>light, which leaves only the </span>green<span> light to make it to our eyes.</span>
Answer:
The answer is "telescopes".
Explanation:
Throughout ancient times, astronomical observatories have indeed been available, and so many historical locations were reserved for astronomical observations. All contemporary astronomers lacked within those older telescopes were lenses until 1610. A telescope is indeed an instrument used to view far-off objects. Telescopes often are being used to look at planets and stars.
Explanation:
Given that,
Mass = 0.254 kg
Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]
Force = 0.5 N
y = 0.628
We need to calculate the A and d
Using formula of A and d
.....(I)
....(II)
Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Put the value of
in equation (I) and (II)


From equation (II)


Hence, This is the required solution.