1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
14

In which of these situations, is mechanical energy being conserved? (Neglect, air resistance, friction, and breaking) Check all

that apply.
Child on a swing


Pendulum


Bow and Arrow


Roller Coaster

Question 2
As an object falls to the ground, its potential energy is being converted to kinetic energy.


True
False
Question 3
The energy that an object has stored due to its position or shape is called:

kinetic energy


potential energy


chemical energy


electrical energy

Question 4
Calculate the potential energy stored in a 10 kg block, 5 meters above the ground.


490 J


50 J


490 N


50 N

Question 5
An elevator weighs 1500 Newtons. Calculate how much potential energy it has when it is lived 500 meters in the air.


75,000 J


750 J


7,500,000 J


750,000 J
Physics
1 answer:
lana66690 [7]3 years ago
5 0

1) Mechanical energy is conserved in all the situations listed

2) True

3) The energy that an object has stored due to its position or shape is called potential energy

4) The potential energy of the block is 490 J

5) The potential energy of the elevator is 750,000 J

Explanation:

1)

The mechanical energy of an object is the sum of its kinetic energy (KE) and its potential energy (PE):

E=KE+PE

Where

KE is the energy due to the motion of the object

PE is the energy due to the position of the object (it can be either gravitational potential energy or elastic potential energy)

In absence of non-conservative forces, such as friction or air resistance, the mechanical energy is always conserved. Therefore, the mechanical energy is conserved in all the situations listed here:

Child on a swing  --> there is a continuous conversion between gravitational potential energy and kinetic energy

Pendulum  --> there is a continuous conversion between gravitational potential energy and kinetic energy

Bow and Arrow  --> there is a conversion between elastic potential energy of the bow and kinetic energy of the  arrow

Roller Coaster --> there is a continuous conversion between gravitational potential energy and kinetic energy

2)

The potential energy of an object is given by

PE=mgh

where

m is its mass

g is the acceleration due to gravity

h is the height of the object relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where

v is the speed of the object

As an object falls to the ground, its height h decreases, therefore the potential energy PE decreases as well. However, the speed of the object, v, increases during the fall, and therefore the kinetic energy KE increases. This means that potential energy is converted into kinetic energy.

3)

Potential energy is the energy possessed by an object due to its position. It can be of two types:

  • Gravitational potential energy: it is the potential energy due to the position of an object in a gravitational field. It is calculated as mgh, as shown in part 2)
  • Elastic potential energy: it is the potential energy stored in an elastic object when it is stretched or compressed. It is calculated as \frac{1}{2}kx^2, where k is the spring constant of the elastic object and x is the stretching/compression of the object relative to its equilibrium position.

4)

The potential energy stored in an object held above the ground is given by

PE=mgh

where

m is the mass of the object

g is the acceleration of gravity

h is the height of the object relative to the ground

For the object in this problem, we have

m = 10 kg

g=9.8 m/s^2

h = 5 m

Substituting, we find

PE=(10)(9.8)(5)=490 J

5)

As before, the potential energy of the elevator is given by

PE=mgh

where m is its mass and h is its height above the ground.

Here we don't have the mass of the elevator. However, we know its weight:

W=1500 N

But we also know that the weight of an object is equal to the product between its mass and the acceleration of gravity:

W=mg

So we can rewrite the potential energy as

PE=Wh

and the height of the elevator is

h = 500 m

Therefore, its potential energy is

PE=(1500)(500)=750,000 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

You might be interested in
Look again at the pictures of the Marina District and Candlestick Park. They showed the very different effects of the same earth
lyudmila [28]

Explanation:

The deeper the sediment layer above bedrock, the more soft soil there is for the seismic waves to travel through. Soft soil means bigger waves and stronger amplification. The earthquake damage to this building may have been influenced by the type of soil it's sitting on.

5 0
2 years ago
What is the difference in atoms involved in a chemical reaction and a nuclear reaction?
NeX [460]
In chemical reactions, electrons are transferred.
While in nuclear reactions, protons and neutrons are the ones transferred.

Hope this helps.<span />
4 0
3 years ago
A block of wood measuring 2.75 cm x 4.80 cm x 7.50 cm has a mass of 84.0 g. will the block of wood sink or float in water?
KIM [24]
The volume of the block of wood is given by length × width ×height
 = 2.75 × 4.80 × 7.5
 = 99 cm³
Density is given by mass/volume
Thus = 84.0 g/ 99 cm³
         = 0.848 g/cm³
Hence;  since the block is less dense than water (1 g/cm³) it will float
6 0
2 years ago
If each Coulomb of charge is given 20 Joules of energy, what is the voltage of the battery?
Assoli18 [71]

Answer:

Explanation:

V = J/C

V = 20/1

= 20 v

Option A is the correct answer

3 0
3 years ago
Two identical strings, of identical lengths of 2.00 m and linear mass density of μ=0.0065kg/m, are fixed on both ends. String A
kolezko [41]

Answer:

beat frequency = 13.87 Hz

Explanation:

given data

lengths l = 2.00 m

linear mass density μ = 0.0065 kg/m

String A is under a tension T1 = 120.00 N

String B is under a tension T2 = 130.00 N

n = 10 mode

to find out

beat frequency

solution

we know here that length L is

L = n × \frac{ \lambda }{2}      ........1

so  λ = \frac{2L}{10}  

and velocity is express as

V = \sqrt{\frac{T}{\mu } }    .................2

so

frequency for string A = f1 = \frac{V1}{\lambda}

f1 = \frac{\sqrt{\frac{T}{\mu } }}{\frac{2L}{10}}

f1 = \frac{10}{2L} \sqrt{\frac{T1}{\mu } }      

and

f2 = \frac{10}{2L} \sqrt{\frac{T2}{\mu } }

so

beat frequency is = f2 - f1

put here value

beat frequency = \frac{10}{2*2} \sqrt{\frac{130}{0.0065}}  - \frac{10}{2*2} \sqrt{\frac{120}{0.0065} }

beat frequency = 13.87 Hz

6 0
3 years ago
Other questions:
  • The weight of air measured in units of force per area is called _____.
    6·2 answers
  • Which statement accurately classifies helium?
    10·1 answer
  • How long does it take for light from the sun to reach earth
    11·2 answers
  • what is the resistance of a clock if it has a current of 0.30 a and runs on a 9.0-v battery? 0.033 2.7 9.3 30
    5·2 answers
  • A particle moving in the x direction is being acted upon by a net force f(x)=cx2, for some constant
    7·1 answer
  • Which electric component provides energy to the circuit of a flashlight?
    8·2 answers
  • If two 100 ohms resistors are placed in series, their total resistance is what?
    8·1 answer
  • Suppose that 2 J of work is needed to stretch a spring from its natural length of 34 cm to a length of 46 cm. (a) How much work
    15·1 answer
  • Why are carbon brushes used? How do these work?
    12·2 answers
  • Free pointzzzzz for everyoneeeee
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!