In physics, displacement is a physical quantity that is used to describe the overall change in the position of an object/person.
In other words, it describes how far you are from your initial position.
In the given problem, the initial position is the same as the final position. This means that overall change in position is zero, which also means that the difference between the final and initial positions is zero.
Based on the above, the displacement is zero.
Answer:
t = 2.68 x 10¹⁴ years
Explanation:
First we need to find the amount of energy that Sun produce in one day.
Energy = Power * Time
Energy of Sun in 1 day = (3.839 x 10²⁶ W)(1 day)(24 hr/1 day)(3600 s/ 1 hr)
Energy of Sun in 1 day = 3.32 x 10³¹ J
Now, the time required by the nuclear power generator, in years, will be:
Energy of power generator = Energy Sun in 1 day = 3.32 x 10³¹ J
3.32 x 10³¹ J = Power * Time
3.32 x 10³¹ J = (3.937 x 10⁹ W)(t years)(365 days/1 year)(24 hr/1 day)(3600 s/ 1 hr)
t = 3.32 x 10³¹ /1.24 x 10¹⁷
<u>t = 2.68 x 10¹⁴ years</u>
Answer:
The length of the rod should be

Explanation:
Period of simple pendulum is given by

We have

The length of the rod should be

Answer:
The kinetic energy for both objects is the same.
Explanation:
While in other cases the kinetic energies of two objects that have different masses might be different depending on their velocities, in this case both the 3 kg book and 5 kg bowling ball have the same kinetic energy.
This is because kinetic energy is calculated using the formula: K = 1/2 * m * v^2, where m represents the mass and v represents the velocity of the object.
Since the book and the bowling ball are sitting still on the floor, their velocities are zero. Hence, when we plug in 0 for velocity into the equation for kinetic energy, we will get that the kinetic energy is 0 for the book and the bowling ball.
Hope this helps!