Answer:
the moluculer formula is the answer
Explanation:
Answer:
Mg
Explanation:
The standard reduction potentials are
<u>E°/V
</u>
Au³⁺(aq ) + 3e⁻ ⟶ Au(s); 1.42
Hg²⁺(aq) + 2e⁻ ⟶ Hg(l); 0.85
Ag⁺(aq) + e⁻ ⟶ Ag(s); 0.80
Cu²⁺(aq) + 2e⁻ ⟶ Cu(s); 0.34
Mg2+(aq) + 2e- ⟶ Mg(s); -2.38
The more negative the standard reduction potential, the stronger the metal is as a reducing agent.
Mg is the only metal with a standard reduction potential lower than that of Cu, so
Only Mg will react spontaneously with Cu²⁺.
Given:
P1 = 13.0 atm
T1 = 20 °C
T2 = 102 °C
Required:
P2 of oxygen
Solution:
At constant volume,
we can apply Gay-Lussac’s law of pressure and temperature relationship
P1/T1=P2/T2
(13.0 atm) / (20 °C)
= P2 / (102 °C)
P2 = 66.3 atm
The answer is not in the choices given.
Global winds, coriolis effect and <span>continental deflections. Hope this helps!</span>