After reacting, place a red moist litmus paper into the final solution and the litmus paper will turn blue. This indicates that the solution is alkaline.
Alternative methods
Using universal indicator
using phenophtalein
using bromothyl blue
using methyl orange
use pH probe connected to a data logger
The friction can be used as a stopper for the electricity so it can slow
or it can increace speed
Answer:
These glucose molecules are stored in the liver and muscles to be used for fuel, especially during physical activity. Carbohydrates improve athletic performance by delaying fatigue and allowing an athlete to compete at higher levels for longer. nutrients, such as fat or muscle protein, are utilized to make energy.
Explanation:
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The type of atom has the strongest attraction for electrons in bond formation Chlorine (Ci) c<span>onsider the location of barium, chlorine, iodine, and strontium on the periodic table.</span>