Answer:
the answer is scientific question
Explanation:
Answer:
The second run will be faster - true, the increased surface area of catalyst will increase the rate of reaction
The second run will have the same rate as the first - possible, in case there is a factor other than catalyst limiting the reaction
The second run has twice the surface area - yes, 44 sqcm to 22 sqcm
Explanation:
A catalyst is a material which speeds up a reaction without being consumed in the process. A heterogeneous catalyst is one which is of a different phase than the reactants. The effectiveness of a catalyst is dependent on the available surface area. The first step for this question is to determine the total available surface area of catalyst in both processes.
Step 1: Determine radius of large sphere




Step 2: Determine surface area of large sphere



Step 3: Determine radius of small sphere




Step 4: Determine surface area of small sphere



Step 5: Determine total surface area of 8 small spheres



- Surface area of 1 large sphere
- Surface area of 8 small spheres
Options:
- The second run will be faster - true, the increased surface area of catalyst will increase the rate of reaction
- The second run will be slower - false, the increased surface area of catalyst will increase the rate of reaction
- The second run will have the same rate as the first - possible, in case there is a factor other than catalyst limiting the reaction
- The second run has twice the surface area - yes, 44 sqcm to 22 sqcm
- The second run has eight times the surface area - no, 44 sqcm to 22 sqcm
- The second run has 10 times the surface area - no, 44 sqcm to 22 sqcm
Well, the sugar is dissolving in the water as you mix it which is a physical change.
0.25 moles of CO2 is present in 11 grams of CO2.
Explanation:
A mole represents the number of chemical entities in an element or molecule.
Number of moles of an element or molecule is determined by the formula:
The Number of moles (n) = weight of the atom given ÷ atomic or molecular weight of the one mole of the element or molecule.
Themolar mass of one mole of carbon dioxide is:
12+ ( 16×2)
= 44 gram/mole
The given weight is 44 grams of carbon dioxide.
Putting the values in the equation,
n= 11 gms÷44 gms/ mole
n = 0.25 mole