Answer:
3.6 m/s
Explanation:
From the law of conservation of momentum,
Total momentum before jump = Total momentum after jump
<em>Note: Before Dan jump off the skateboard, they where both moving with the same velocity</em>
u(m+m') = mv+m'v'................. Equation 1
Where m = Dan's mass, m' = mass of the skateboard, u = common velocity before the jump, v = Dan's final velocity, v' = The final velocity of the skateboard.
make v the subject of the equation
v = [u(m+m')-m'v')]/m.............. Equation 2
Given: u = 4.0 m/s, m = 50 kg, m' = 5 kg, v' = 8 m/s
Substitute into equation 2
v = [4(50+5)-(5×8)]/50
v = (220-40)/50
v = 180/50
v = 3.6 m/s
Answer:
Each part so obtained will represent the fraction 1/8 and the number line obtained will be of the form: To mark 3/8; move three parts on the right-side of zero. To mark 5/8; move five parts on the right-side of zero. To mark -1 3/8 i.e. -11/8; move eleven parts on the left-side of zero.
Explanation:
Answer:
3.8 secs
Explanation:
Parameters given:
Acceleration due to gravity, g = 9.8 
Initial velocity, u = 11.76 m/s
Final velocity, v = 49 m/s
Using one of Newton's equations of linear motion, we have that:

where t = time of flight of arrow
The sign is positive because the arrow is moving downward, in the same direction as gravitational force.
Therefore:

The arrow was in flight for 3.8 secs
Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
Should be 4x5x4!! If you take 8•15, you get 120!! There are six sides on a rectangular prism!! Thus leaving a value of 20 per side!! And I noted to properly equal out with the maximum volume it should mean 4•5=20!! Thus being 4•4•5