Answer:
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
Pumpkins are used as decorations during the fall months.
An= mth term.
an=a₁+(n-1)*d
a₁₂=41
a₁₅=140
a₁₂=41
41=a₁+(12-1)*d
41=a₁+11d
a₁+11d=41 (1)
a₁₅=140
140=a₁+(15-1)*d
140=a₁+14d
a₁+14d=140 (2)
With the equiations (1) and (2) build a system of equations
a₁+11d=41
a₁+14d=140
we solve it.
-(a₁+11d=41)
a₁+14d=140
--------------------
3d=99 ⇒d=99/3=33
a₁+11d=41
a₁+(11*33)=41
a₁+363=41
a₁=41-363=-322
an=a₁+(n-1)*d
an=-322+(n-1)*33
an=-322+33n-33
an=-355+33n
an=-355+33n
To check:
a₁₂=-355+33*12=-355+396=41
a₁₅=-355+33*15=-355+495=140.
Answer:
h=9
Step-by-step explanation:
18h+30=192
18h=162
h=9
<span>In addition to linear, quadratic, rational, and radical functions, there are exponential functions. Exponential functions have the form f(x) = <span>bx</span>, where b > 0 and b ≠ 1. Just as in any exponential expression, b is called the base and x is called the exponent.</span>
<span>An example of an exponential function is the growth of bacteria. Some bacteria double every hour. If you start with 1 bacterium and it doubles every hour, you will have 2x bacteria after x hours. This can be written as f(x) = 2x.</span>
<span>Before you start, f(0) = 2<span>0 </span>= 1</span>
<span>After 1 hour f(1) = 21 = 2</span>
<span>In 2 hours f(2) = 22 = 4</span>
<span>In 3 hours f(3) = 23 = 8</span>
and so on.
<span>With the definition f(x) = <span>bx</span> and the restrictions that b > 0 and that b ≠ 1, the domain of an exponential function is the set of all real numbers. The range is the set of all positive real numbers. The following graph shows f(x) = 2x.</span>
<span> </span>