Answer:
ΔG = 18KJ/mol
Explanation:
Given data:
ΔS = 0.09 Kj/mol.K
ΔH = 27 KJ/mol
Temperature = 100 K
ΔG = ?
Solution:
Formula:
ΔG = ΔH - TΔS
ΔH = enthalpy
ΔS = entropy
by putting values,
ΔG = 27 KJ/mol - 100K(0.09 Kj/mol.K)
ΔG = 27 KJ/mol - 9 KJ/mol
ΔG = 18KJ/mol
Answer is: mass of sodium nitrate is 21,25 g.
m(H₂O) = 500 g · 1 kg/1000 g = 0,5 kg.
b(solution) = 0,500 m = 0,500 mol/kg.
m(NaNO₃) = ?
b(solution) = n(NaNO₃) ÷ m(H₂O).
n(NaNO₃) = 0,500 mol/kg · 0,5 kg.
n(NaNO₃) = 0,25 mol.
m(NaNO₃) = n(NaNO₃) · M(NaNO₃).
m(NaNO₃) = 0,25 mol · 85 g/mol.
m(NaNO₃) = 21,25 g.
Cao + H2O ---->Ca(OH)2
Calculate the number of each reactant and the moles of the product
that is
moles = mass/molar mass
The moles of CaO= 56.08g/ 56.08g/mol(molar mass of Cao)= 1mole
the moles of water= 36.04 g/18 g/mol= 2.002moles
The moles of Ca (OH)2=74.10g/74.093g/mol= 1mole
The mass of differences of reactant and product can be therefore
explained as
1 mole of Cao reacted completely with 1 mole H2O to produce 1 mole of Ca(OH)2. The mass of water was in excess while that of CaO was limited
<h3>
Answer: D) all of the above</h3>
Explanation:
The lungs pump oxygen in and carbon dioxide out, which goes through the blood stream to help with the cell's energy needs.
Nutrients pass through the blood stream as well. The nutrients start with the digestive system (mouth, esophagus, stomach, small intestine) before going into the blood stream. The nutrients are building blocks to help make new cells when old ones die off.
When those cells die off, the body sheds them like dead skin, but internal dead cells are passed off as waste. This waste and other byproducts the body doesn't need passes through the blood stream as well.
In short, the blood stream is basically the highway to help get desired materials (eg: oxygen and nutrients) and get rid of waste (eg: carbon dioxide and other unwanted byproducts or dead cell material)
So that's why the answer includes A, B and C.
They can decay through one of three ways:
alpha decay
beta decay and
gamma decay
ALPHA- particle with two neutrons and two protons is ejected from the nucleus of the radioactive atom. this particle released is called an alpha particle. Only occurs with heavy metals.
BETA- pretty much when a proton is transformed into a neutron, or vise versa. in a beta minus decay, the nuetron decays into a proton and in a beta plus decay, a proton decays into a neutron
GAMMA- the nucleus changes from a high energy state to a low energy state by releasing electromagnetic radiation (photons). the number of protons and neutrons stay the same during this reaction therefore the element is still the same.