Given :
Mass of water, m = 2 grams.
The temperature of water drops from 31 °C to 29 °C .
The specific heat of water is 4.184 J/(g • °C).
To Find :
Amount of heat lost in this process.
Solution :
We know, heat lost is given by :

Therefore, amount of heat lost in this process is 16.736 J.
Answer:
F = 351×10³lb
Explanation:
Given the density
ρg = 64.6lb/ft³
Diameter d = 12ft
The tank is horizontally cylindrical. The vertical distance from the top to the bottom of the tank is h = 12ft
The pressure in the tank is
P = ρgh = 64.6 × 12 = 775.2lb/ft²
The force exerted on one end of the tank is therefore F = PA = 775.2 × πd² = 775.2π×12²
F = 351×10³lb.
Planck's constant. A physical constant adopted in 2011 by the CGPM.
Answer:
Explanation:
Using the magnification formula.
Magnification = Image distance(v)/object distance(u) = Image Height(H1)/Object Height(H2)
M = v/u = H1/H2
v/u = H1/H2...1
3) Given the radius of curvature of the concave lens R = 20cm
Focal length F = R/2
f = 20/2
f = 10cm
Object distance u = 5cm
Object height H2= 5cm
To get the image distance v, we will use the mirror formula
1/f = 1/u+1/v
1/v = 1/10-1/5
1/v = (1-2)/10
1/v =-1/10
v = -10cm
Using the magnification formula
(10)/5 = H1/5
10 = H1
H1 = 10cm
Image height of the peg is 10cm
4) If u = 15cm
1/v = 1/f-1/u
1/v = 1/10-1/15
1/v = 3-2/30
1/v = 1/30
v = 30cm
30/15 = H1/5
15H1 = 150
H1/= 10cm
5) if u = 20cm
1/v = 1/f-1/u
1/v = 1/10-1/20
1/v = 2-1/20
1/v = 1/20
v = 20cm
20/20 = H1/5
20H1 = 100
H1 = 5cm
6) If u = 30cm
1/v = 1/f-1/u
1/v = 1/10-1/30
1/v = 3-1/30
1/v = 2/30
v = 30/2 cm
v =>15cm
15/30 = Hi/5
30H1 = 75
H1 = 75/30
H1 = 2.5cm