Answer:
No, it is not conserved
Explanation:
Let's calculate the total kinetic energy before the collision and compare it with the total kinetic energy after the collision.
The total kinetic energy before the collision is:

where m1 = m2 = 1 kg are the masses of the two carts, v1=2 m/s is the speed of the first cart, and where v2=0 is the speed of the second cart, which is zero because it is stationary.
After the collision, the two carts stick together with same speed v=1 m/s; their total kinetic energy is

So, we see that the kinetic energy was not conserved, because the initial kinetic energy was 2 J while the final kinetic energy is 1 J. This means that this is an inelastic collision, in which only the total momentum is conserved. This loss of kinetic energy does not violate the law of conservation of energy: in fact, the energy lost has simply been converted into another form of energy, such as heat, during the collision.
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
Answer:
D) Grounding
Explanation:
The potential difference between cloud and ground leads to ionization of the atmosphere and resulting conduction through the air often to ground (although it can be between clouds at different potentials. I would say grounding, like the spark when you touch a hot battery terminal to ground on a car.
Answer:
The distance traveled in 1 year is:
Explanation:
Given
--- speed
--- time
Required
The distance traveled
This is calculated as:

So, we have:

This gives:


-- approximated
Pulling a dogs leash: inertia