The molarity of (HNO₃) that was used if 2.00 L must be used to prepare 4.5 L of a 0.25M HNO₃ solution is 0.563 M
<u><em>calculation</em></u>
This is calculated usind M₁V₁=M₂V₂ formula
where,
M₁( molarity ₁) = ?
V₁( volume ₁) = 2.00 L
M₁ (molarity ₂) = 0.25M
V₂( volume₂) = 4.5 L
make M₁ the subject of the formula by diving both side of the formula by V₁
M₁ is therefore = M₂V₂/V₁
M₁ =[ (0.25 M x 4.5 L) / 2.00 L ] =0.563 M
Answer: They always have the same functional groups.
Explanation:
use quizlet too if you have toooo
Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
Answer:
12: This is decomposition because nitrogen triiodide is breaking apart.
13: This is double displacement because the elements in the compounds are "switching".
14: This is synthesis because the water and carbon dioxide are combining.
15: This is also synthesis because the hydrogen and oxygen are combining.
16: This is single displacement because the sodium is "switching" the element it's bonding with.