1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
8

The tides are considered an example of shallow-water waves because the tidal bulges have a wavelength that is on the order of __

________.a. a few centimetersb. a few metersc. tens of metersd. tens of kilometerse. thousands of kilometers
Physics
1 answer:
Angelina_Jolie [31]3 years ago
3 0

Answer:

option E

Explanation:

There are the rise and fall of the sea level because of the gravitational force exerted by the sun, moon and the rotation of the earth.

Tidal force effect the whole earth, the movement of the earth by mere meter, change in atmosphere as it mostly consists of fluid the movement of fluid takes place in kilometers.

Hence, we can say that tidal bulges have a wavelength in order of thousands of kilometers.

The correct answer is option E

You might be interested in
baseball is hit into the air at an initial speed of 37.2 m/s and an angle of 49.3 ° above the horizontal. At the same time, the
Agata [3.3K]

Answer:

The average speed of the fielder is 5.24 m/s

Explanation:

The position vector of the ball after it was hit can be calculated using the following equation:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t.

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

α = launching angle.

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

Please, see the attached figure for a graphical description of the problem.

When the ball is caught, its position vector will be (see r1 in the figure):

r1 = (r1x, 0.873 m)

Then, using the equation of the position vector written above:

r1x = x0 + v0 · t · cos α

0.873 m = y0 + v0 · t · sin α + 1/2 · g · t²

Since the frame of reference is located at the point where the ball was hit, x0 and y0 = 0. Then:

r1x = v0 · t · cos α

0.873 m = v0 · t · sin α + 1/2 · g · t²

Let´s use the equation of the y-component of r1 to obtain the time of flight of the ball:

0.873 m = 37.2 m/s · t · sin 49.3° - 1/2 · 9.8 m/s² · t²

0 = -0.873 m + 37.2 m/s · t · sin 49.3° - 4.9 m/s² · t²

Solving the quadratic equation:

t = 0.03 s and t = 5.72 s.

It would be impossible to catch the ball immediately after it is hit at t = 0.03 s. Besides, the problem says that the ball was caught on its way down. Then, the time of flight of the ball is 5.72 s.

With this time, we can calculate r1x which is the horizontal distance traveled by the ball from home:

r1x = v0 · t · cos α

r1x = 37.2 m/s · 5.72 s · cos 49.3°

r1x = 1.39 × 10² m

The distance traveled by the fielder is (1.39 × 10² m - 1.09 × 10² m) 30.0 m.

The average velocity is calculated as the traveled distance over time, then:

average velocity = treveled distance / elapsed time

average velocity = 30.0 m / 5.72 s = 5.24 m/s

8 0
3 years ago
Within a period of the periodic table, how do the properties of the elements vary?
Nonamiya [84]

Answer:

Elements in the same period have the same number of electron shells; moving across a period (so progressing from group to group), elements gain electrons and protons and become less metallic. This arrangement reflects the periodic recurrence of similar properties as the atomic number increases.

Explanation:

The Periodic Table can predict the properties of new elements, because it organizes the elements according to their atomic numbers. ... They hope that the two nuclei at the centre of these atoms will fuse and form a heavier nucleus. When these heavy elements form, they are usually highly unstable.

5 0
3 years ago
A rock is thrown upward from the top of a 30 m building with a velocity of 5 m/s. Determine its velocity (a) When it falls back
castortr0y [4]

Answer:

a) 5 m/s downwards

b) 17.86 m/s

c) 24.82 m/s

d) 0.228

Explanation:

We can set the frame of reference with the origin on the top of the building and the X axis pointing down.

The rock will be subject to the acceleration of gravity. We can use the equation for position under constant acceleration and speed under constant acceleration:

X(t) = X0 + V0 * t + 1/2 * a * t^2

V(t) = V0 + a * t

In this case

X0 = 0

V0 = -5 m/s

a = 9.81 m/s^2

To know the speed it will have when it falls back past the original point we need to know when it will do it. When it does X will be 0.

0 = -5 * t + 1/2 * 9.81 * t^2

0 = t * (-5 + 4.9 * t)

One of the solutions is t = 0, but this is when the rock was thrown.

0 = -5 + 4.69 * t

4.9 * t = 5

t = 5 / 4.9

t = 1.02 s

Replacing this in the speed equation:

V(1.02) = -5 + 9.81 * 1.02 = 5 m/s (this is speed downwards because the X axis points down)

When the rock is at 15 m above the street it is 15 m under the top of the building.

15 = -5 * t + 1/2 * 9.81 * t^2

4.9 * t^s -5 * t - 15 = 0

Solving electronically:

t = 2.33 s

At that time the speed will be:

V(2.33) = -5 + 9.81 * 2.33 = 17.86 m/s

When the rock is about to reach the ground it is at 30 m under the top of the building:

30 = -5 * t + 1/2 * 9.81 * t^2

4.9 * t^s -5 * t - 30 = 0

Solving electronically:

t = 3.04 s

At this time it has a speed of:

V(3.04) = -5 + 9.81 * 3.04 = 24.82 m/s

---------------------

Power is work done per unit of time.

The work in this case is:

L = Ff * d

With Ff being the friction force, this is related to weight

Ff = μ * m * g

μ: is the coefficient of friction

L = μ * m * g * d

P = L/Δt

P = (μ * m * g * d)/Δt

Rearranging:

μ = (P * Δt) / (m * g * d)

1 horsepower is 746 W

20 minutes is 1200 s

μ = (746 * 1200) / (100 * 9.81 * 4000) = 0.228

8 0
3 years ago
If it takes 200 joules of energy to lift a bucket of water 3 meters in 2 seconds, how much power would be required to do the sam
Harlamova29_29 [7]

200 joules of work energy are involved.  That's all we need to know to answer the question.  Once we know that 200 joules of work energy are involved, we don't care what was lifted, or how far, or how long it took, or how many people worked on it, or how much they were paid, or what was the distribution of their gender identities, or the ethnic diversity among the team. or what day each of them celebrates as their sabbath.  Any other information besides the 200 joules is only there to distract us, and see whether we're paying attention.

Power = (work or energy) / (time to do the work or move the energy)

Power = (200 joules) / (5 seconds)

<em>Power = 40 watts</em>

3 0
3 years ago
Spaceship 1 and Spaceship 2 have equal masses of 300kg. They collide. Spaceship 1's final speed is 3 m/s, and Spaceship 2's fina
fiasKO [112]

Answer:

B. 1500 kg*m/s

Explanation:

Momentum p = m* v

In any type of collision, the total momentum is preserved!

The total momentum before and the total momentum after the collision is the same. We know the mass and speed after the collision so we can calculate the total momentum.

p1 + p2 =

m1*v1 + m2*v2

m1 = me = 300 kg

v1 = 3 m/s

v2 = 2 m/s

Substitute the given numbers:

300*3 + 300+2

900 + 600

1500 kg*m/s, which is answer B.

3 0
3 years ago
Other questions:
  • At the point of fission, a nucleus of ^235 U that has 92 protons is divided into two smaller spheres, each of which has 46 proto
    5·1 answer
  • You heat a mug of water to make hot chocolate. Which statement best describes the changes in the water?
    8·2 answers
  • 1. Which of the following best describes the movement of an object at rest if no outside forces act on it?
    6·2 answers
  • The energy content of food is conventionally measured in Calories rather than joules. One Calorie in nutrition is equal to 4184
    11·1 answer
  • A uniform steel rod of cross-sectional area A is attached to rigid supports and is unstressed at a temperature of 458F. The stee
    13·2 answers
  • Fill up the blank :- Weight is measured as the downward force of __________.
    14·2 answers
  • A toboggan approaches a snowy hill moving at 12.4 m/s. The coefficients of static and kinetic friction between the snow and the
    9·1 answer
  • Water boils at 100°C and turns into steam. Which similarities or differences are there between water in these two states? (1 poi
    11·1 answer
  • A skier skis down a slope with a constant acceleration of 3 m/s?. If she reaches the bottom in 10 seconds, how long is the slope
    5·1 answer
  • Tell me the max amount you should owe on this card.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!